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The potential of mathematical crystallography as an emerging field is examined

from a sociological point of view. Mathematical crystallography is unusual as an

emerging field as it is also an old field, albeit scattered, with evidence of

continued substantial activity. But its situation is similar to that of an emerging

field, so we analyse it as such. Comparisons with past emergent efforts suggest

that a new field can grow if given an economic demand for its product and a

receptive environment. Developing a field entails developing a sense of identity,

developing infrastructure and recruiting practitioners.

1. What is mathematical crystallography?

It is a commentary on the state of mathematical crystal-

lography that we should start by attempting to determine what

‘mathematical crystallography’ is. Unlike mathematics (whose

subject has been a major topic of philosophical debate for over

two millennia) and crystallography (whose subject seems

well defined despite cataloguing questions about topics like

quasicrystals and periodic structures of fewer than three

dimensions), the subject of mathematical crystallography itself

seems uncertain.

This is ultimately a sociological issue, but the most readily

available data lie in information science. We look at two

catalogues, the Library of Congress (which helpfully has a

section labelled ‘geometrical and mathematical crystal-

lography’) and zbMATH (which does not). We find that the

two catalogues give two quite different pictures of the field,

suggesting that an inclusive notion of ‘mathematical crystal-

lography’ will incorporate more than one community, and

possibly several.

En route, we will encounter evidence that while a somewhat

central community of practitioners has a relatively coherent

view of the subject, much activity in what we might call

mathematics for crystallography is not captured by that

coherent view.

1.1. Mathematical crystallography as a self-identified field

In the Library of Congress system,2 chemistry occupies QD

1–999, crystallography occupies QD 901–999 and mathema-

tical crystallography occupies QD 911–919. The complete list

of Library of Congress codes for mathematical crystal-

lography, and the number of works actually in the Library of

Congress, are listed in Table 1; almost all mathematical crys-

tallography books are listed under QD 911, General Works.

It may be more useful to look at what individual authors call

‘mathematical crystallography’. In his seminal – or perhaps

more accurately, Promethean – work, Harold Hilton (1903)

wrote that ‘the object of this book is to collect for the use of

English readers those results of the mathematical theory of

crystallography which are not yet proved in the modern

textbooks on that subject in the English language’. Notice that

he was not attempting to define a field; he was merely

providing access to it for researchers unfamiliar with German.

The book is divided into point groups and space groups,

although there is a brief mention of a model of crystal growth.

One could undertake a survey of works published, or a

survey of views of practitioners, to get a comprehensive

description of the field. But for now, a superficial gist may be

obtained by reviewing a biased sample of books available at

the University of South Florida (Tampa) library (and one

other book, Schwarzenberger, 1980). Here, the QD 911

section appears to contain three kinds of truly general works.

There are books primarily in geometric crystallography, which

we could define as crystallographic groups and combinatorial

structures – the latter being discrete sets of points, graphs and

complexes, patterns and tilings – used to model crystals. These

are books like Altmann (1977), Boisen & Gibbs (1985), Brown

et al. (1978), Buerger (1971), Engel (1986), Hilton (1903),

Jaswon (1965), O’Keeffe & Hyde (1996), Schwarzenberger

(1980), Sunada (2013), Wells (1977) and Whittaker (1985).

Then there are books on crystal structure determination,

which we could regard as the extension of geometric crystal-

lography to include diffraction analysis. These are books like

Giacovazzo (2002), Hauptman (1972), Julian (2008), Kitai-

gorodskii (1961), Prince (1994), Rollett (1965) and Shmueli

(2007). And there are books on physical properties arising

from (deducible from) these structures, like Nowick (1996)

and Wooster (1973). In addition, there are specialized works,

and books on ancillary subjects such as quasicrystals and

1 This article forms part of a special issue dedicated to mathematical
crystallography, which will be published as a virtual special issue of the
journal in 2014.
2 The primary competitor for the Library of Congress system is the Dewey
Decimal System, whose schedule includes 500 Natural Sciences & Mathe-
matics > 540 Chemistry > 548 Crystallography > 548.0151 Mathematical
Principles and 548.7 Mathematical Crystallography. We will use the Library of
Congress in this article in order to count titles more readily.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xo5020&bbid=BB85
http://crossmark.crossref.org/dialog/?doi=10.1107/S2053273313033573&domain=pdf&date_stamp=2014-02-12


colour groups. These are books like Jawson & Rose (1982),

Patera (1998) and Senechal (1995). So what do these books

have to say about their subject?

Many of these books began with statements by the authors

on the nature of the field or the intent of the book. Starting

with geometric crystallography, Altmann (1977) wrote that

‘This is an applied group theory book’, while Boisen & Gibbs

(1985) are more specific about their two goals: ‘The first is to

derive the 32 crystallographic point groups, the 14 Bravais

lattice groups and the 230 space groups. The second is to

develop the mathematical tools necessary for these

derivations . . . ’. Engel (1986) stated that mathematical crys-

tallography has ‘found increasing interest’ during the previous

decade, with ‘[s]ignificant results . . . obtained by algebraic,

geometric and group theoretic methods’. O’Keeffe & Hyde

(1996) focused on how the atoms of a crystal are arranged in

space, which requires ‘learning the methods appropriate for

describing infinite periodic objects’, in particular, point and

space symmetry groups and ‘simple geometric patterns that

underlie crystal structures’, i.e. ‘polyhedra, . . . , plane

patterns, . . . , sphere packings, cylinder packings, nets, . . . ’.

Sampling from our examples among the books focusing on

crystal structure determination, Julian (2008) took a position

similar to that of O’Keeffe & Hyde: ‘Crystallography is the

science of finding the locations of atoms in crystals’, and the

goal of the text is ‘ . . . understanding not only how atoms are

arranged in crystals but also how crystal systems are related to

each other’. Prince (1994) had different criteria for inclusion:

‘Either they are things that I have had to learn, or look up

frequently because I didn’t use them enough to retain the

details in ready memory, or they are things that I have

frequently explained to other colleagues’; one could describe

the topics in Prince’s text as matrices, symmetries of finite and

infinitely repeating objects, vectors and tensors, data fitting,

uncertainty estimates and statistical significance, data fitting in

crystal structure determination, and the fast Fourier trans-

form.

Finally, sampling from our remaining examples, Jawson &

Rose (1982) wrote, ‘The central problem of mathematical

crystallography is to determine the independent microscopic

symmetries consistent with every macroscopic crystal

symmetry.’ Nowick (1996) was concerned with ‘ . . . the effect

of crystal symmetry in determining the tensor properties of

crystals’, which is a position similar to Wooster’s (Wooster,

1973), who proposed to apply group theory to ‘vibrations of

atoms and molecules’. Senechal (1995) stated that her primary

concern was crystal classification, and ‘ . . . the problem of

relating the geometry of discrete point sets to the diffraction

spectra of functions associated to them . . . ’.

In her historical account of geometric crystallography,

Senechal (1990) wrote, ‘Geometrical crystallography includes

the study of crystal form, the mathematical representation of

crystal structure and the relations between them.’ That view of

the past is certainly what one gets from the antiquarian work

by Dana (2011), which focused on macroscopic crystal form.

The biased sample of books above suggests that while math-

ematical crystallography has remained primarily concerned

with geometry, the subject has shifted from the study of

macroscopic crystal form to microscopic (in fact, nanoscopic)

crystal form.

With the interesting exception of Prince (1994), our sources

suggest that mathematical crystallography has retained its

identity while expanding its reach. But since the subject is over

a century old, and since it is central to crystallography (at least

from the traditional point of view), one would expect that
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Table 1
The Library of Congress classification codes for ‘Geometrical and mathematical crystallography’ as of 2009 (Library of Congress, 2009), and the number
of items in the Library of Congress under those codes as of 30 July 2013, according to their online catalogue.

Code Description
No. of
items Comments

QD 911 General works 234 Items on geometric crystallography (including aperiodicity),
supporting theory, tables, methods and software

QD 912 Fundamental systems; including tetragonal, orthorhombic,
monoclinic systems

1 One book published in 1971

QD 913 Diagrams 16 Books of tables and diagrams published between 1866 and
1973, inclusive

QD 915 Goniometric measurements 4 All published between 1825 and 1934, inclusive
QD 919 Statistical methods 1 One book published in 1995

Table 2
Searches for the string ‘mathematical crystallography’ in leading
databases, searched on 24 August 2013.

Both Google Scholar and WorldCat spread very wide nets and we would
expect inflated numbers.

Database

No. of items
listed under
‘mathematical
crystallography’

Amazon (books) 53
American Chemical Society publications 27
Google Scholar 597
American Mathematical Society Mathematics Reviews

(MathSciNet)
23

SciFinder Scholar (contains the former Chemical
Abstracts)

10

Web of Knowledge (contains the former Science
Citation Index)

14

WorldCat (‘WorldCat connects you to the collections
and services of more than 10 000 libraries
worldwide’)

195

World Wide Web of Science (‘maintained by the US
Department of Energy’s Office of Scientific and
Technical Information’)

74

Zentralblatt für Mathematik (zbMATH) 17



the phrase ‘mathematical crystallography’ would appear

frequently in titles, abstracts and keywords. But as we can see

from Table 2, it does not. This suggests that as a self-identified

field, or at least as a field identified by the Library of Congress,

mathematical crystallography is in a more quiescent mode, but

not dormant, since the dates of publication of the books on the

shelf of QD 911 suggest that the recent slowdown is moderate,

and may be reversing: see Fig. 1.

1.2. The mathematics in crystallography

Another approach is to suggest that mathematical crystal-

lography consists of the mathematics developed for, or

(directly) inspired by, crystallography. This would be hard to

measure, but we can take a brief and superficial look at the

mathematics done in association with crystallography.

There are two major databases for mathematical literature:

the old Zentralblatt für Mathematik und ihre Grenzgebiete

(now zbMATH, maintained by the Heidelberg Academy,

Springer and the FIZ Karlsruhe–Leibniz Institute for Infor-

mation Infrastructure), and the new Mathematical Reviews

(now MathSciNet, maintained by the American Mathematical

Society). zbMATH and MathSciNet receive articles and books

and send many of them to volunteer reviewers to compose

paragraph-long micro-reviews, which are then published (now

posted online).

In addition, zbMATH and MathSciNet collaborate in

maintaining a Mathematical Subject Classification (MSC, see

American Mathematical Society, 2009), which is organized as

follows. First, mathematics is subdivided into fields, each of

which is assigned a two-digit code. Then each of these fields is

subdivided into subfields, each of which is assigned an addi-

tional letter from the alphabet. Finally, each of these subfields

is subdivided into sub-subfields, and each of these sub-

subfields is assigned an additional two-digit code. Thus 05 is

Combinatorics, 05B is ‘Designs and configurations’, and

mathematical crystallographers may be particularly interested

in 05B35 (‘Matroids, geometric lattices’), 05B40 (‘Packing and

covering’) and 05B45 (‘Tessellation and tiling problems’).

There are about 6000 sub-subfields altogether.

When an editor of zbMATH or MathSciNet sends an article

or a book out to be reviewed, the editor assigns tentative

‘primary’ and ‘secondary’ subject codes (and keywords). The

reviewer will take these into account when proposing the

subject codes (and keywords) to be used. Many items will thus

have multiple codes, and most will have at least one.

This practice facilitates data mining. For example, the string

‘crystal’ appears in eight sub-subfields in the MSC 2010 table,

although some of these are apparently subjects that arose

from mathematical crystallography long ago and have since

gone their own way (but may be of interest to crystal-

lographers again, some day). All eight are listed in Table 3.

We can now use zbMATH to estimate research activity

(zbMATH states on its website that it covers ‘over 3000’

journals). Since most sub-subfields in mathematics are essen-

tially pure, we take the parsimonious view and query only

about three of these sub-subfields: 74E15 Mechanics of

deformable solids > Material properties given special treat-

ment, especially anisotropy and crystalline structure > Crys-

talline structure; 74N05 Mechanics of deformable solids >

Phase transformations in solids > Crystals; and 82D25 Statis-

tical mechanics, structure of matter > Applications to specific

types of physical systems > Crystals. We get 4486 items

containing at least one of these three codes.3
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Table 3
The string ‘crystal’ appears in eight sub-subfields of the MSC 2010 table posted at http://www.ams.org/msc/pdfs/classifications2010.pdf.

For the moment, we will take the core of ‘mathematics in crystallography’ to be 74E15, 74N05 and 82D25

Field Subfield Sub-subfield

14 Algebraic geometry 14F (Co)homology theory 14F30 p-adic cohomology, crystalline cohomology
20 Group theory and generalizations 20H Other groups of matrices 20H15 Other geometric groups, including

crystallographic groups
52 Convex and discrete geometry 52C Discrete geometry 52C23 Quasicrystals, aperiodic tilings
74 Mechanics of deformable solids 74E Material properties given special treatment,

especially anisotropy and crystalline structure
74E15 Crystalline structure

74 Mechanics of deformable solids 74N Phase transformations in solids 74N05 Crystals
76 Fluid mechanics 76A Foundations, constitutive equations, rheology 76A15 Liquid crystals
82 Statistical mechanics, structure of matter 82D Applications to specific types of physical systems 82D25 Crystals
82 Statistical mechanics, structure of matter 82D Applications to specific types of physical systems 82D30 Random media, disordered materials

(including liquid crystals and spin glasses)

Figure 1
During the 20th century, publications of items shelved in the Library of
Congress under QD 911 peaked during the 1960s and 1970s. Query
conducted 24 August 2013. 3 This query was conducted on August 23, 2013.



We can see the growth of the field – or perhaps (being

realistic), the growth of its coverage. zbMATH allows

subsearches by year, and while the oldest record in this search

is dated 1872, the first year with at least ten entries was 1978

and the first with at least 100 was 1995. The number of entries

in zbMATH per year for items with codes 74E25, 74N05 or

82D25 are shown in Fig. 2.

But what are the producers of these items researching? We

can get a rough picture by using the fact that items frequently

have multiple codes, and we look for the other codes occurring

with the codes 74E15, 74N05 and 82D25 among these 4486

items. Just looking at the fields, we see that besides the 2990

items with field 82 (Statistical mechanics, structure of matter)

and the 2210 items with field 74 (Mechanics of deformable

solids), there are eight other fields with over 100 items each;

these are enumerated in Table 4.

We can obtain a more precise picture by applying the

following algorithm to this population of 4486 items. In most

(but not all) of these fields, there may be one very dominant

subfield which, in turn, may have one very dominant sub-

subfield. For each of these areas, we determine the most

heavily populated subfield, and for that subfield, we determine

the most heavily populated sub-subfield. The results of this

algorithm applied to these eight fields is presented in Table 5.

Incidentally, if we narrow our focus to those items with codes

from ‘pure’ mathematics (all codes below 69, and thus

including statistics and computer science as pure mathe-

matics), we obtain 1741 items.

zbMATH’s picture of the mathematics associated with

crystallography is now a bit different from the Library of

Congress picture of mathematical crystallography. While

many items involve the symmetries and discrete structures

associated with mathematical crystallography, there are also

items in differential equations, statistics and numerical

analysis (as well as physics). These other subjects remind us of

Prince’s (Prince, 1994) pragmatic approach to selecting topics:

the mathematics in crystallography is the mathematics that

crystallographers find useful – or that mathematicians think

crystallographers will find useful.

This is, of course, a very naive and superficial picture; a

more careful comprehensive review would be desirable.

1.3. Uncertainties and caveats

These two pictures, from the Library of Congress and

zbMATH, suggest that ‘mathematical crystallography’ is

something slightly different from the mathematics done for

crystallography. In fact, comparing Figs. 1 and 2, we can see

that publications in QD 911 declined at the same time that

publications in 74E15, 74N05 and 82D25 were rising.

One caveat is immediate. In x1.1, we listed 24 books

(besides Dana, 2011). What does zbMATH say about them?

Twelve are not listed at all – apparently mathematical content

was not what zbMATH had in mind – and two old books are

listed, but with no MSC codes. That leaves ten, and among

these, the code 74E15 did not occur, 74N05 occurred once and

82D25 occurred five times. This strongly suggests that the

mathematics recognized by zbMATH in these three (relatively

applied) sub-subfields is somewhat different from traditional

‘mathematical crystallography’. Incidentally, while 24 codes

turned up among these nine items, only four showed up more

than once: 20H15 (‘Other geometric groups, including crys-

tallographic groups’) eight times, 51F15 (‘Reflection groups,

reflection geometries’) five times, 82D25 (‘Crystals’) four

times, and 01A60 (‘History and biography > History of

mathematics and mathematicians > 20th century’) twice.

Perhaps mathematical crystallography is an old field with a

relatively large penumbra. This view might be supported by

considering the last two meetings of the Society for Industrial

and Applied Mathematics’ activity group on Mathematical

Aspects of Materials Science, each of which had over 200

attendees attending about 100 two-hour minisymposia, many

of them focusing on crystallographic topics, but only one to

three of which were on ‘mathematical crystallography’.

Perhaps mathematical crystallography, considered inclu-

sively, is a panoply of fields with uncertain internal connec-

tions and communication, and thus uncertain self-

identification. Consider a genuinely new field. Nanoscience

and nanotechnology have been studied by academics in

information science using keyword and other string searches

(e.g., Porter et al., 2008; Islam & Miyazaki, 2010) employing

data-mining techniques of the sort described in Porter &

Cunningham (2004). Grienesen & Zhang (2011) argue that in
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Figure 2
From 1978 to 2012, the number of items listed per year in zbMATH under
sub-subfields 74E15 . . . > Crystalline structure; 74 N05 . . . > Crystals; and
82D25 . . . > Crystals has increased substantially. Slow turnaround may
affect reports for 2011 and 2012. Query conducted 22 August 2013.

Table 4
Eight fields were listed with over 100 items each among the 4486 items
coded 74E15, 74N05 and 82D25.

Field
No. of
items Percentage

20 Group theory and generalizations 493 11%
35 Partial differential equations 367 8.2%
52 Convex and discrete geometry 342 7.6%
81 Quantum theory 336 7.5%
65 Numerical analysis 210 4.9%
78 Optics, electromagnetic theory 179 4%
80 Classical thermodynamics, heat transfer 168 3.7%
51 Geometry 137 3.1%



the 1990s, there was less consensus in ‘nanoscale studies’ over

what keywords practitioners should use in their publications;

this would make it more difficult for other researchers inter-

ested in the same or related topics to find those publications,

and it would make it more difficult for information scientists to

survey the field.

Researchers studying mathematical crystallography may

face similar obstacles, which (as we shall see) may have an

effect on how the field develops. Mathematical crystallography

is not new, but if it is re-emerging from a panoply of scattered

subfields, it may resemble a new field in significant ways.

2. Newly emerging science and technology

Emergence has become an academic subject in its own right –

or, more accurately, emergence has become several academic

subjects in philosophy, history, sociology, business and (for

tracking it) information science. While the literature on

innovation appears essentially descriptive, patterns discerned

among the successes and failures have led several scholars to

offer advice, if not prescriptions, for participants in emerging

fields. In this section, we review some basics about emerging

fields and innovations of science and technology, and we apply

them to mathematical crystallography.

2.1. About emergence

Friedel (2007) proposed that technology advances incre-

mentally from the work of innovators who have their own

agendas – agendas that may not have much to do with what

posterity makes of those innovations. For example, group

theory arose during the 18th and 19th centuries partly because

of efforts to solve polynomial equations – or prove that they

were insoluble (in terms of finitary expressions), and then

work out what could be said about the solutions

(Wussing, 1984). Seven decades after Leonhard

Euler’s implicit use of what we call ‘groups’, Evariste

Galois launched the word ‘group’ in 1831, and even

then it wasn’t until 1846 that Augustin-Louis Cauchy

proposed ‘groups of permutations’ (within hailing

distance of the ‘groups of actions’ in contemporary

algebra and crystallography) as a subject of study in

itself.

Of course, group theory is a branch of science, not

technology, but the theory of emergence spreads an

even wider net than that. For example, consider the

question of whether an innovation needs a publicly

identifiable champion. A century ago, Cubism arose as

an artistic movement that initially had no public

leadership until critics hailed Pablo Picasso and

George Braque over a decade after the movement

took over Paris (Sgourev, 2013). Meanwhile, the rise of

Surrealism was almost immediately trumpeted by

André Breton’s Manifeste de surréalisme (Nadeau,

1982). These two near-simultaneous developments in

art in France suggest that a visionary public leadership

may or may not be a characteristic of a new movement.

There seem to be two pre-eminent models of emergence.

Donald Campbell (1960, 1987) proposed that knowledge

and creation arose from innovators combining and adjusting

extant notions and then selecting the useful results. Science

and the arts evolve rather as life does, with a diversity of ideas

and a system of selection. This model was adjusted by Dosi

(1982), who proposed that as industrial systems arose, they

tended to carve various ‘paths’ that they then tended to follow.

For example, David (1985) describes how the QWERTY

keyboards that (almost) all of us use came into dominance

almost by accident, but once QWERTY was in place, the

inconvenience of changing keyboards and the natural

conservatism of human beings conspired to keep QWERTY

long after it ceased being the optimal choice.

Thomas Kuhn (1965) claimed that ‘normal science’ consists

of ‘puzzle solving’ under the auspices and conscious and

unconscious constraints of an overarching ‘paradigm’. The

paradigm incorporates not only the accepted theory, but also

the accepted views of what is important, what the major

problems and goals of the field are, and so on. When a para-

digm comes under sufficient pressure, and if there is an

apparently superior competitor (superior in the view of

enough participants), there may be a ‘paradigm shift’ to the

competitor. Like Campbell, Kuhn proposes that selection

depends on the participants choosing from their own agendas

and points of view: again, innovation is a social process.

Economics is the dismal science, and the economic view of

emergence lies in the shadow of Joseph Schumpeter’s (1942)

notion of creative destruction, in which people used to well

worn paths are forced elsewhere. Resistance to emergence is

also a subject of much study; but the problems caused by

emergence raise the question of why anyone would bother.

Darden (1978) proposes that if we regard an academic field as

having as its subject a major problem or challenge, then an
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Table 5
Eight fields were listed with over 100 items each among the 4486 items coded
74E15, 74N05 and 82D25.

The rightmost column is the percentage of the items of a field that are listed in the given
subfield(s) or sub-subfield(s); thus 91.5% of the items with codes 74E15, 74N05 or
82D25 that also have code 20 (Group theory) are assigned code 20H15.

Subfield (and sub-subfield, if there is a concentration)
No.
of items

Percentage
of the field

20H15 Other groups of matrices > other geometric groups,
including crystallographic groups

451 91.5%

35Q Equations of mathematical physics and other areas of
application

194 52.8%

52C23 Discrete geometry > quasicrystals, aperiodic tilings 119 34.8%
81Q General mathematical topics and methods in quantum

theory and 81V Applications to specific physical systems
273 81.3%

65C Probabilistic methods, simulation and stochastic differ-
ential equations and 65M Partial differential equations,
initial value and time-dependent initial-boundary value
problems and 65N Partial differential equations, boundary
value problems and 65Z Applications to physics

142 67.6%

78A General 174 97.2%
80A Thermodynamics and heat transfer > 80A22 Stefan

problems, phase changes etc. and 80A23 Inverse problems
137 81.5%

51F15 Metric geometry > reflection groups, reflection
geometries and 51M20 Real and complex geometry >
polyhedra and polytopes; regular figures, division of spaces

113 82.5%



emerging field would attract interest if it addressed the

problem in an effective or compelling way. Recall Wussing’s

(1984) outline of the emergence of group theory, which

attracted interest because of its utility in addressing the

challenge of computing, or even describing, roots of poly-

nomials. In a very different field, the construction of the

unprecedented wide, tall domes of the Basilica of St Mary of

the Flower in Florence, St Peter’s Basilica in Rome and St

Paul’s Cathedral in London exhibited the utility of statics and

novel design principles in architecture (Cowan, 1977).

The community may be slow to accept the most useful

innovations, even if the innovations were something the

community (or at least, powerful players in the community)

want. For example, Crowe (1967) describes Hermann Grass-

mann’s development of a ‘barycentric calculus’ which he

communicated to the world via large books that leading

mathematicians attempted to read and failed to understand.

Mathematicians tried reading the books because they

suspected that Grassmann’s calculus might be the algebra of

three-dimensional space that they increasingly desired. But

because Grassmann was unable to communicate, the bary-

centric calculus largely disappeared. Half a century later,

Willard Gibbs – who communicated via preprints to targeted

European colleagues – successfully sold his new ‘vector

algebra’, which was similar to the barycentric calculus, but

apparently more accessible.

Turning to biology, Charles Darwin did not propose any

mechanism for inheritance to underlie his theory of natural

selection, with the result that mechanisms of inheritance

became a major part of the subsequent controversy. Gregor

Mendel’s theory of genetic inheritance was what Darwin

desired, but either because Mendel did not bring his results to

the attention of the right people in the right way (Eiseley,

1958), or because Mendel’s theory was radically different from

what contemporary botanists were prepared to accept

(Barber, 1961), Mendel’s theory would not be popularized

until long after Mendel and Darwin were dead.

Sometimes the innovation is ahead of its time in the sense

that it appears before the machinery that it will ultimately

articulate with. Daylight (2012) outlines the development of

the modern computer from the 1930s to the 1960s, and he

presents various engineers developing the first electronic

computers during the 1940s. Only in the 1950s, well after the

logician Alan Turing became active in computing, did the first

software engineers stumble across Turing (1936) and decide

that Turing’s abstract machine was a model for what they were

doing. Although Turing’s paper chronologically preceded the

inventions (plural) of the electronic computer, its impact came

later.

The array of obstacles to innovation is itself a topic for

research and commentary. Barber (1961) enumerated several

forms of resistance within the scientific community itself,

including entrenched interests, limited imagination and

preconceptions about mathematics. Crane (1972) wrote about

the effects of isolation among geographically scattered prac-

titioners, and the need for infrastructure (journals, confer-

ences, organizations) to connect practitioners of a new field.

(Some movements get started and established at one place –

e.g., Paris for cultural movements like Cubism – before

spreading out.) Fagerberg & Verspagen (2009) warned that

new fields face credibility problems when interacting with

practitioners of other fields, especially when competing for

resources.

One way to address the problems of access to resources and

infrastructure is to build one’s own. For example, a century

ago biology had an anti-mathematical bias, and when the

Council of the Royal Society told Francis Galton that math-

ematical papers should be kept separate from papers on

applications of mathematics to biology, Galton’s reaction was

to ask Karl Pearson if he should resign from the Society.

Pearson advised Galton to found his own journal, and

Biometrika was the result (Barber, 1961).

For infrastructure and allocation of resources to be issues,

the identity of a field must itself be an issue. But self-identity

can be problematic. For example, a decade ago, Schummer

(2004) described nanoscience and nanotechnology as a

panoply of different fields, and recall that Grienesen & Zhang

(2011) warned that using ‘nano*’ as a search term for data

mining ‘nanoscale studies’ in the 1990s will miss many publi-

cations. Perhaps during the 1990s, the self-identity of ‘nano-

scale studies’ had not jelled to the point it has today. A lack of

identity complicates communication: if a field’s identity is so

weak that a participant cannot recognize a fellow participant –

or if a potential recruit cannot recognize a participant – then

building a network of contacts in that field will be difficult.

Recruitment of new participants, either graduate students

or researchers from other fields, may be critical. Bettencourt et

al. (2008) developed a simple formula comparing the number

of publications per year to the number of new authors

appearing each year, and applied it to the emergence of

cosmological inflation, cosmic strings, prions, H5N1 influenza,

carbon nanotubes and quantum computing. They concluded

that the development of an emerging field depends substan-

tially on recruitment, which suggests that it depends on the

population of potential recruits and the networks of contacts

between participants and that population.

These desiderata are almost surely interdependent.

Assuming Friedel’s (2007) point that a major innovation is

developed incrementally by many players, a network among

participants is necessary for the innovation to be developed

into something more than an appealing notion. And a visible

application or accomplishment of a field would make it more

attractive to potential recruits, who would go on to make more

accomplishments.

2.2. The (re-)emergence of mathematical crystallography

To do justice in describing mathematical crystallography as

a ‘newly emerging [field of] science and technology’ (AKA a

NEST; see, e.g., Guo et al., 2012) we would have to conduct the

sort of investigation described in Robinson et al. (2013); but

here, all we can do is expand on the point of Guo et al. (2012)

that the future of an emerging field is uncertain. However, we

can outline how some of the extant generic advice might be

research papers

100 Gregory McColm � Prospects for mathematical crystallography Acta Cryst. (2014). A70, 95–105



adapted to mathematical crystallography. We will focus on

three issues: Darden’s (1978) suggestion that a field advances

by solving problems, the suggestion of Bettencourt et al. (2008)

that recruitment of new participants is critical and Crane’s

(1972) emphasis on infrastructure.

If mathematical crystallography facilitated a major advance

in crystallography, that would demonstrate its utility to the

community. Let us consider an example. One of the major

challenges of modern crystallography is the design of crystals

in advance of synthesis, along with predictions of the hypo-

thetical crystal’s properties, so that the design is useful in the

synthesis of the crystal and the resulting product possesses the

predicted properties. The apparent inability to accomplish this

by the 1980s was described by Maddox (1988) as a ‘continuing

scandal’. In his introduction to the 2011 anthology Modern

Methods of Crystal Structure Prediction, Oganov (2011) writes

that ‘the situation began to change in 2003–2006, and this

avalanche-like development of this important field can be

called a scientific revolution that continues to this day’. This

statement is largely supported by the very naive search in the

Web of Knowledge shown in Fig. 3.

The articles in Oganov’s anthology articulated to a wide

range of mathematical fields. Blatov & Proserpio (2011)

presented the underlying combinatorial (or perhaps ‘topolo-

gical’) view of the structures being predicted. Wales (2011),

Tipton & Hennig (2011), Schöne & Jansen (2011), Goedecker

(2011) and Lyakhov et al. (2011) described applications of

several popular optimization techniques, while Martonák

(2011) and Leoni & Boulfelfel (2011) described simulations of

phase transitions, i.e. of dynamic situations. If, for example, an

application of mathematical techniques provided a reliable

method for rapidly generating both predictions of crystal

structures and reliable procedures for synthesis, that would

attract favourable attention to the field.

Crystal structure prediction provides only one of several

classes of challenges where mathematical crystallography

could make a considerable contribution and raise its profile in

the process. That would encourage recruitment, so let us now

look at that issue. Since mathematical crystallography is an

interdisciplinary field in the intersection of chemistry,

physics and mathematics, we could start with challenges facing

interdisciplinary scientific fields. In their 1995 review of

Mathematical Challenges from Theoretical/Computational

Chemistry, the National Research Council (1995) concluded

with several ‘cultural issues and barriers to interdisciplinary

work’. Some of these should be familiar. For example, faculty

in one department may have difficulty receiving appropriate

credit for work in another field. And students seeking

credentials in an interdisciplinary field may have difficulty

completing the prerequisites for the courses that they desire.

The National Research Council even brought up the fact that

at many universities, chemists and mathematicians are in

separate buildings and have limited daily interaction. And

there is a considerable language barrier between chemists and

mathematicians. The language barrier may be central to a

problem that the National Research Council did not directly

address: the alleged difficulty of mathematics.

Popular culture agrees that ‘Math is hard’.4 Tobias (1978)

claims that the problem is the attitude towards mathematics,

but others claim that mathematics is intrinsically hard. Smith

(2002) argues that the difficulty is linguistic: in mathematics,

language is used in a more artificial way. One might go beyond

Smith to argue that one difference between chemistry and

mathematics is that in the latter, both discovery and verifica-

tion are linguistic exercises. Meanwhile, in chemistry, both

discovery and verification rely on instruments and experiment.

The result is that, in mathematics, there is a greater burden on

the language, which then becomes more difficult for novices to

master.

Whatever the reason, math appears hard. It may even be

hard for mathematicians. One place to see the difference

between chemistry and mathematics at work is to compare

journal backlogs. The IUCr Executive Committee (Interna-

tional Union of Crystallography, 2013) reported the mean

publication times during 2011 for their eight journals, and the

range was from 0.7 months to 5.4 months, with a mean of 3.8

months. Meanwhile, the American Mathematical Society

(2012) surveyed 114 journals and reported the median times in

2011 from submission to acceptance; these ranged from 2

months to 18.2 months, with a mean of 7.8 months. There may

be several reasons for the longer review time, but the expla-

nation that ‘math is hard’ is a likely one, although (as we shall

see), there may be a subcultural reason.

Recruitment into a recognizably hard subject poses chal-

lenges, no matter how rewarding it might be. It is even more

necessary than usual to make the field accessible to new-

comers, and that brings us to infrastructure.

Traditionally, newcomers would learn a field by listening –

taking classes and tutorials or talking to participants – or by

reading. The traditional infrastructure thus consists of meet-

ings, books and journals. Meetings and journals are institu-
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Figure 3
Results from the Web of Knowledge search for items under TOPIC =
‘crystal structure prediction’ (including quotes) conducted 3 September
2013. This graph is purportedly of ‘all items’ under that topic, and as the
first item appeared in 1991, Maddox (1988) is not listed in the Web of
Knowledge under that topic. However, Maddox (1988) is listed (under
different topics), with 237 citations within that database. Query
conducted 3 September 2013.

4 What Mattel’s popular Barbie doll said was, ‘Math class is tough’ (New York
Times, 1992).



tional, while books are usually results of individual effort. This

brings us to institutional infrastructure.

There are several organizations relevant to mathematical

crystallography. Probably foremost is the International Union

of Crystallography (IUCr), whose Commission on Mathema-

tical and Theoretical Crystallography organizes workshops

and tutorials on the foundations of crystallography at loca-

tions around the world. In addition, the IUCr has member

organizations, ‘adhering bodies’, usually national crystal-

lographic organizations, which form ‘national committees for

crystallography’ to liaise with the Union. These organizations

may organize meetings and workshops.5 And the IUCr

maintains several journals (including this one) and publishes

texts and monographs in association with Oxford University

Press.

Mathematical crystallography is interdisciplinary, so several

scientific societies provide usable resources. Many of these

societies are national, often with articulation agreements to

analogous organizations in other nations. The larger organi-

zations include:

(i) For chemistry, the American Chemical Society and the

Materials Research Society.

(ii) For mathematics, the American Mathematical Society,

the European Mathematical Society and the Society for

Industrial and Applied Mathematics (SIAM).

(iii) For physics, the American Physical Society, the

Deutsche Physikalische Gesellschaft (DPG) and the

European Physical Society (which has the DPG as a member).

Some of these organizations have activity groups focusing

on crystallography; for example, the DPG has a Fachverband

Kristallographie, while SIAM has a Mathematical Aspects of

Materials Science activity group, which includes crystal-

lography. One major service these

organizations provide is sponsoring

meetings. Many meetings are open for

unsolicited contributed talks, but more

to the point, some meetings facilitate

recruitment and network building by

accepting proposals for symposia,

minisymposia and special sessions at the

meetings. A few accept proposals for

tutorials.

Meetings are expensive (in both

money and time) to organize and to

attend, which leaves books, journals and

the internet as more convenient, if more

detached, alternatives. Let us take a

brief look at the journals, which nowa-

days are largely internet resources.

Returning to zbMATH, one can

identify the journals that published the

most articles in a given field. In Table 6,

we list the journals that had published

the most articles in the sub-subfields

74E15, 74N05 and 82D25, and those that had published the

most articles in those sub-subfields that were also in the eight

fields of mathematics listed in Table 3. The journals ranged

from the International Journal of Plasticity, which published

218 articles in the three sub-subfields but was not among the

top three journals in any of the eight fields of mathematics, to

the Journal of Physics A, which published 224 articles in the

three sub-subfields and was also among the top three journals

in six of the eight fields of mathematics of Table 3. The jour-

nals that were among the top three in at least three of the eight

fields were the Journal of Physics A, Acta Crystallographica A,

Zeitschrift für Kristallographie, the Journal of Computational

Physics and Physica D. All journals listed cover either general

science, crystallography, physics or materials science; there is

one applied mathematics journal and no chemistry journals.

From this point of view, despite the Library of Congress and

Dewey Decimal classifications of crystallography as a subfield

of chemistry, physics may have a greater footprint in mathe-

matics for crystallography than chemistry. Perhaps this is

because there is more crystallographic activity in physics than

in chemistry. Perhaps this is because physics is more mathe-

matical than chemistry and so mathematical and theoretical

crystallographers might be more inclined to publish in physics

journals. Perhaps there is a different reason.

Recall one of the major conclusions of x1: (classical)

mathematical crystallography is not the same thing as

mathematics for crystallography (as measured by zbMATH).

In addition, although there is enormous activity in crystal-

lography with geometric and mathematical issues (in crystal

prediction alone, there are metal–organic frameworks, zeolites

and other polymer structures), there are no chemistry journals

listed in Table 6. The crystallography in chemistry journals are

not listed by zbMATH.

It seems that there are at least two communities of practi-

tioners working in this multidisciplinary field and possibly
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Table 6
The five journals that had published the most articles in sub-subfields 74E15, 74N05 and 82D25, with
the number of articles published in each (under column ‘All’).

Then for each of the eight subfields with the largest intersection with 74E15, 74N05 and 82D25, the three
journals that had published the most articles, with the number of articles published in each (under columns
‘20’, ‘35’ etc.). Search conducted 21 October 2013.

Journal All 20 35 51 52 65 78 80 81

Acta Cryst. A 165 88 10 34
Arch. Mech. 6
Dokl. Akad. Nauk, Ross. Akad. Nauk 10
Int. J. Mod. Phys. A 10
Int. J. Solids Struct. 167
Int. J. Heat Mass Transfer 6
Int. J. Plasticity 218
J. Math. Phys. 10
J. Comput. Phys. 19 27 8
J. Mech. Phys. Solids 286
J. Phys. A Math. Theor.

(formerly J. Phys. A Math. Gen.)
224 40 17 7 59 9 51

Math. Models Methods Appl. Sci. 7
Mod. Phys. Lett. B 8
Physica D 16 6 41
Phys. Lett. A 10 27
Z. Kristallogr. 23 7 19

5 In 2014, the IUCr itself, and other groups, are organizing events around the
United Nations International Year of Crystallography.



several more. In this survey, we have not encountered

evidence of strong lines of communication between these

communities, and such a lack of self-identification or of

recognition of common interests can limit access to or use of

infrastructure. Lack of communication may make subcultural

obstacles more difficult to surmount.

For example, consider the longer review times for mathe-

matics journals (as opposed to crystallography journals). This

may reflect different expectations of journal editors, which

may in turn reflect cultural differences that could complicate

collaborations. For example, crystallography journals do not

expect reviewers to verify the reported results; that would

require replicating the experiments. But mathematics journals

do expect reviewers to state whether the results appear

‘sound’. This may be a reason why mathematics referee

reports take longer.

If a journal receives a paper, it has certain expectations

about how that paper should be dealt with. If a journal finds

itself dealing with a multidisciplinary paper with referees (and

authors) having varying expectations, that can make the

process and the ultimate decision on whether to publish more

difficult. This is merely another example of a subcultural

barrier to multidisciplinary research.

Considering the situation, how should mathematical crys-

tallographers move forward?

3. Prospects and prescriptions

The prospects for mathematical crystallography would appear

to be good. We start with the relatively non-controversial

claim that many of the leading technological challenges of the

21st century will be critically dependent on advances in

materials science. Crystals, including nanocrystals and quasi-

crystals, are already a major part of materials science: as of

1 November 2013, the Web of Science has 1.8 million items of

topic ‘crystal’ and 3.0 million of topic ‘materials’. We would

expect the economic demand for crystallography to continue

(if not grow) through the century.

That probably means an economic demand for mathema-

tical crystallography. Recalling the characterizations of crys-

tallography as the determination of the positions of atoms in

crystals – either for designing novel crystals or for classifying

or determining properties of crystals – the problem is and

remains heavily mathematical. Let us return to crystal

prediction to see how this might work.

A number of material design efforts are under way, and

some of them rely on ‘big data’ methods, i.e. having a

computer program generate reams of prospective material

designs and then having another computer program winnow

through them, seeking designs promising enough to bring to

human attention. For example, White (2013) described the

work of Gerbrand Cedar of MIT, Stefano Curtarolo of Duke

and Alán Aspuru-Guzik of Harvard on the ‘rational and

systemic design of future high-performance materials’: they

use computer programs to predict materials, and then after

(attempting to) synthesize the predicted materials, they use

more programs to analyse and catalogue the results. ‘The

initiative’s ultimate goal is to use this iterative process to

significantly reduce the time and cost to bring new materials

from the laboratory to the marketplace.’

Automating combinatorial chemistry – and thus having

computers conduct combinatorial analysis – has its limitations.

The number of combinations to generate and then check

explodes exponentially with the number of components

(atoms or molecular building blocks) per unit, and it is quite

simple to devise a search that would exhaust the world’s

computer memory and take geologic time to compute. ‘Not

only do we not understand the basic physical principles we

need to model, there are at the moment no computers

powerful enough to predict how certain material structures

yield particular properties’, wrote Johnson (2007). ‘When it

comes to solid matter, systems are so complex that current

computer modelling tools quickly run out of steam.’ Johnson

contended that ‘ . . . material by design isn’t even on the

horizon, certainly not for the production of bulk commercial

materials’.

Mass generation of designs is already being done in crystal

prediction. For example, the Atlas of Hypothetical Zeolite

Structures (Foster & Treacy, 2010) lists over 5 million ‘crystal

nets’ (just for zeolites) which can be regarded as (rather

Spartan) blueprints. The problems are generating and identi-

fying chemically feasible crystal nets.

Mathematicians have been developing workable algorithms

for thousands of years. The motivation was often that, for the

given problem, there was no extant algorithm, or that all

extant algorithms were unsatisfactory. If what is desired is a

mathematical toolkit for crystal prediction, we know whom to

ask. With that in mind, the probable economic demand for

materials by design should assure a future for mathematical

crystallography in this century. But as Robert Farley (2008)

observed in a different context, just because something must

happen does not mean it will. The unfortunate histories of

Grassmann’s barycentric calculus and Gregor Mendel’s

discrete genetics – both developments greatly needed by the

scientific community, and yet neglected for decades – suggest

that the prospects for mathematical crystallography may

require more than a solution to an extant problem.

If mathematical crystallography is to generate major

applications, then an evolutionary epistemologist might

recommend recruiting a diverse community of participants.

That would greatly increase the odds of finding associations of

ideas that will produce useful innovations. If one believes in

the potential of mathematical crystallography, then recruiting

participants – either colleagues in other fields, or graduate

students – is the most promising strategy.

One possibility is to advertise. This article is in a virtual

issue of Acta Crystallographica A, which was inspired by a

sequence of minisymposia on mathematical crystallography in

the Society of Industrial and Applied Mathematics’ 2013

meeting on Mathematical Aspects of Materials Science.

Meetings like this one may be useful for recruiting, and so may

semi-popular works like Weyl (1952), Senechal & Fleck (1988)

and Conway et al. (2008). In addition, manifestos like Yaghi et

al. (2003) and Nespolo (2008) may serve as advertising.
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Recalling Grassmann, Mendel and Turing, advertising in itself

may not be enough: there has to be extant activity to advertise.

For example, Toumey (2009) notes that while several

researchers have told him that they recalled Feynman’s 1959

There’s Plenty of Room on the Bottom speech (published as

Feynman, 1960) being the subject of much conversation

during the following two decades, there were only seven

citations during those two decades; citations became more

common only after the nanotechnology developments of the

1980s.

One must have something to advertise, and the advertise-

ment should be presented in terms that potential recruits are

prepared to hear.

In McColm (2007), mathematical truth was represented as

an invisible edifice: our knowledge was represented as a vine

that grows up the edifice. Mathematicians are thus gardeners.

When a mathematician finds a new balcony, turret or gargoyle,

she leads colleagues to that architectural element by growing a

vine there: the accessibility of this new discovery depends

critically on the passage of the vine.

Recalling Grassmann and Gibbs, inaccessibility may have

delayed the dissemination of a three-dimensional (and in fact,

n-dimensional) algebra by half a century. Accessibility is

critical for recruiting colleagues. And as for recruiting grad-

uate students, recall the metaphor of a vine growing up an

invisible edifice. The vine is more readily climbed by novices if

it has some very climbable trunks, with lots of strong low

branches placed in a navigable pattern. Exposition and

education may be as critical as discovery itself in making an

innovation succeed.

At the SIAM meeting, Michael Zaworotko listed as one of

the primary challenges building a common vocabulary acces-

sible to chemists, crystallographers, mathematicians, physicists

and other participants. In a similar vein, writing about nano*

research, Porter & Youtie (2009) recommend that ‘Minimizing

jargon and acronyms (and we know that we use them here!),

and checking understandability by researchers from other

disciplines, should reduce the barriers to nano research

knowledge transfer.’ A related step would be that multi-

disciplinary articles be relatively self-contained, in that

[strictly necessary (!)] jargon and acronyms be defined within

the article itself: when attracting novices, conciseness may be a

lesser virtue than clarity or accessibility.

4. Discussion

We anticipate a substantial need for mathematical crystal-

lography, a need that is probably already extant. Converting

that need into an economic demand – making contemporary

scientists and engineers aware of that need and persuading

them that the field is worth the effort and resources to develop

– is another matter.

In addition, there is substantial research activity not only in

what we might call classical mathematical crystallography, but

also in mathematical topics related to crystallography outside

of the classical topic. The self-identification among all these

researchers and practitioners as ‘mathematical crystal-

lographers is probably limited, and these participants prob-

ably make up several communities – or even several fractions

of various ancillary communities – rather than an identifiable

community of mathematical crystallographers. This lack of

self-identification and social connections may hamper the

development of the field, and the growth of mathematical

crystallography may depend on building a sense of community

as well as connections to related fields in chemistry, physics

and mathematics.

Building a sense of community may entail recruitment and

infrastructure. But beyond the effects of such consolidation

and encouragement, the prospects of mathematical crystal-

lography will depend on what it can provide for the scientific

and engineering worlds as they address the challenges of the

21st century.

This article arose from a project to map mathematical

crystallography as a field, with progress posted on the Crystal

Mathematician weblog at http://blogs.iucr.net/crystalmath/;

the mapping project will continue. I would like to acknowl-

edge the assistance and advice of those who responded to

postings and correspondence, especially Mike Grienesen,

Mike O’Keeffe, Alan Porter, Lorenzo Sadun, Marjorie Sene-

chal and Peter Strickland. I would also like to acknowledge

the advice of the two referees, whose comments led to major

improvements in this paper.
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